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Abstract.  A temporal pattern matching technique based on formal specifications 
using Linear Time Temporal Logic (LTL) is described. The method is based on Remote 
Execution and Monitoring (REM) of LTL assertions. Unlike verification applications 
where the formal specification is used to locate errors in a corresponding program,  
REM is not concerened with correctness but rather with temporal pattern detection. 
Unlike comparable techniques, such as SQL in temporal databases, the method is 
completely on-line, and does not require storage of the input sequence. This makes 
REM especially suitable for low-impact, real-time, temporal pattern matching of 
potentially never ending applications such as security monitoring and financial 
temporal business rule checking.  

Introduction 
Temporal Logic is a special branch of modal logic that investigates the notion of time 
and order. In [7], Pnueli suggested using Linear-Time Propositional Temporal Logic 
(LTL) for reasoning about concurrent programs. Since then, several researchers have 
used LTL to state and prove correctness of concurrent programs, protocols, and 
hardware (e.g., [5], [6]).  

Linear-Time Temporal Logic (LTL) is an extension of propositional logic where, in 
addition to the propositional logic operators there are four future-time operators and 
four dual past time operators: always in the future (always in the past), eventually, or 
sometime in the future (sometime in the past), Until (Since), and next cycle (previous 
cycle).  
Metric Temporal Logic (MTL) was suggested by Chang, Pnueli, and Manna as a 
vehicle for the verification of real time systems [1]. MTL extends LTL by supporting 
the specification of relative time and real time constraints. All four LTL future time 
operators (Eventually, Always, Until, Next) can be characterized by relative time and 
real time constraints specifying the duration of the temporal operator. 

Run-time Execution and Monitoring (REM) is a method of tracking the behavior of 
an underlying application, such as an embedded system, financial database, or airline 
reservation systems. REM methods range from simple print-statement logging 
methods to run-time tracking of complete formal requirements (e.g. written in 
LTL/MTL) for verification purposes. Indeed, first applications of REM where for 
verification applications, where REM was and is used to track how formal 
specification requirements are conformed to by the actual executing system. 



Recent adaptation of REM methods enable run-time monitoring for non-verification 
purposes, such as temporal business rule checking and temporal security rule 
checking. This adaptation uses REM methods as on-line, real-time, and low-impact 
temporal pattern matchers.  

This paper describes the DBRover, an on-line, real-time, low impact REM tool based 
on LTL and MTL, and its application to temporal pattern detection for financial and 
security applications. 
 
Online Temporal Pattern Detection 
Consider the following two airline security related temporal pattern rules, both 
concerned with detecting a foreign national male passenger with a student visa flying 
to the Harrisburg International Airport near the Three Mile Island nuclear power 
plant: 

R1. Detect such a passenger if he has traveled to the Middle East at least once within 
a year of obtaining his student visa. 

R2. Detect such a passenger if he has traveled to the Middle East at least once within 
a year of obtaining his student visa and he received two or more direct deposits 
from non-US banks within the last year. 

Both rules describe temporal patterns that contain potentially discernable elements 
from an airline security system  operating automatically and in real-time. The two 
primary methods for performing such temporal pattern detection are off-line and on-
line, as described in the sequel. 

 

The Federal Aviation Administration (FAA) has an automated profiling system 
originally termed Computer Assisted Passenger Screening (CAPS) [5] that relies upon 
the data in each Passenger Name Record.  This profiling system is being upgraded to 
access a more extensive range of data.   CAPPS-II will profile airline passengers 
based on secret criteria in order to identify potential terrorists.  Personal information 
about passengers may additionally include that from INS, law enforcement, and 
customs.. Having such history information stored in the system, or in constituent 
subsystems, enables SQL based implementation of a temporal pattern rule such as R1.  
We call such an implementation off-line because it relies on storing and querying 
historical information. An off-line solution induces the following three impact 
consequences. 

1. Temporal, historical, information is stored within the system (e.g. within CAPPS-
II and/or its constituent subsystems). 

2. Temporal and non-temporal pattern detection is initiated by the security related 
query, querying the constituent resources at will. We regard this as high-impact 
solution because a temporal query is initiated from outside the original scope of 
the queried system, thereby impacting the performance of the queried system. For 
example, the INS subsystem of CAPPS-II being impacted by repeated external 
queries from CAPPS-II proper, which sooner or later will degrade the INS 



system performance. Performance degradation will occur because of the actual 
query processing forced on the INS subsystem and because of the fact that with 
time, temporal queries can query monotonically increasing data-sets of historical 
data. 

In addition to performance issues, CAPPS and its constituent subsystems need to 
agree on a shared data representation for merging query results from multiple 
subsystems (e.g. merging INS and law enforcement query results). 

This paper is concerned with low-impact, on-line temporal pattern detection. It uses  
run-time temporal logic monitoring (REM) to detect temporal patterns without using 
historical data (i.e., it is on-line), and without querying the underlying application 
(i.e., it is low-impact). The only communicated information it requires from the 
underlying application (e.g. CAPPS-II constituent subsystems) are Boolean messages 
for basic propositions such as deposit of more than $1000 was made to account of 
SSN=222 11 2222.  

While pattern rule R1 described earlier is programmable within the suggested 
CAPPS-II framework, R2 requires extension which includes banking information. 
Such an extension however, will not lend itself to off-line temporal pattern detection 
methods, for the following reasons: 

1. The banking data systems only store historical/temporal information for a limited 
duration (e.g. 3 months). The industry is unlikely to make any significant change 
to this policy. 

2. Banking data systems are not likely to permit high-impact, CAPPS-II initiated, 
queries, because of the performance consequences discussed earlier as well as 
their own security need to be in full control over the content of any such query.  

In contrast, a REM temporal pattern detection method, being on-line and low-impact, 
can be used in tandem with CAPPS-II, while supporting extensions that support rules 
such as R2.  

 

The Temporal Rover and DBRover 
The Temporal Rover [3] is a code generator whose input is a Java, C, C++, or HDL 
source code program, where LTL/MTL assertions are embedded as source code 
comments. The Temporal Rover parser converts this program file into a new file, 
which is identical to the original file except for the assertions that are now 
implemented in source code. The following example contains an embedded MTL 
assertion for a Traffic Light Controller (TLC) written using the Temporal Rover 
syntax asserting that for 100 milliseconds, whenever light is red, camera should be 
on: 
void tlc(int Color_Main, boolean CameraOn) { 

… /* Traffic Light Controller functionality */ 
/* TRBegin 
TRClock{C1=getTimeInMillis()} // get time from the OS 
TRAssert{ Always({Color_Main == RED} Implies  



         Eventually_C1<1000_{CameraOn == 1})  
 } =>  

// Customizable user actions 
{printf("SUCCESS\n");printf("FAIL\n");printf("DONE!\n");} 
TREnd */ 
} /* end of tlc */ 

The TemporalRover generates code that replaces the embedded LTL/MTL assertion 
with real C, C++, Java, or HDL code which executes in-process, i.e., as part of the 
underlying application. The Temporal Rover is also used for formal specification 
based exception handling [4].  

The DBRover [5]  is a REM version of the TemporalRover whereby assertions are 
monitored on a remote machine, using HTTP, sockets, or serial communication with 
the underlying target application. The DBRover includes a graphical temporal rule 
editor, a temporal rule simulator, and a temporal rule execution engine based on the 
TemporalRover code generator. 

The DBRover is concerned with the following main objectives: 

1. Monitoring on-line, namely no postmortem processing is used. A counter 
example would be to store all events in a database and use a SQL based 
method to query those tables at a later time.  The motivation for this 
requirement is that no expected termination time for the underlying 
application (e.g. security application) should be assumed. With no expected 
termination time the size of the stored information will be monotonically 
increasing, which is unacceptable in most cases. The algorithm chosen for 
the DBRover is fully on-line and does not require monotonically increasing 
storage space. 

2. Low impact. The DBRover does not interrogate the underlying application 
(e.g. the banking system in the R2 example). Rather, it listens to simple 
events pertaining to basic propositions, such as deposit-occurred, or 
balance<0 which are sent to the DBRover by the underlying application via 
sockets or http.  

3. Rule flexibility.  Pattern specification rules, being domain specific and 
evolving, change frequently and are often written by domain experts, not 
programmers. The DBRover uses a GUI for LTL pattern rule entry; rules can 
be changed in the UI and automatically mounted to be monitored, all with 
almost no change to the application being monitored. 

4. Powerful rules language. For the same reasons discussed earlier, pattern 
specification rules need to be able to capture real-life patterns and concerns, 
such as real-time constrains, all while being close to natural language. LTL 
satisfy this requirement; a large body of research points to its expressiveness 
and usefulness as a specification language. MTL adds real-time constraints 
to LTL specifications. 

 



The DBRover listens to sockets, http, or serial communication messages sent to it 
from the main application (APP), such as a banking application. Messages are 
organized in streams that represent sequences of events  or conditions in APP. Every 
cycle, such as whenever the bank account balance changes, the APP send 1 bit per 
basic proposition (e.g. deposit of more than $500 made to account) and possibly an ID 
of the underlying entity being tracked (e.g. SSN or bank account number) indicating 
whether that proposition is true or false in that particular cycle. The DBRover will 
repeatedly re-evaluate the temporal pattern rule, either in a single instance, or using 
multi-instancing (e.g.., one instance per SSN or bank account number). An 
administrative part of the DBRover can be programmed to send out e-mail’s or to 
invoke custom actions (e.g. external, user written program or script) based on the 
success or failure of  chosen rules. 
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